Distribution and Growth of Young-of-the-Year Striped Bass in the Miramichi River Estuary, Gulf of St. Lawrence

Author(s):  
Kimberly A. Robichaud-Leblanc ◽  
Simon C. Courtenay ◽  
Tillmann J. Benfey
Author(s):  
Alan W. Wells ◽  
Donna M. Randall ◽  
Dennis J. Dunning ◽  
John R. Young

<em>Abstract.</em>—Our objectives were to determine if striped bass <em>Morone saxatilis </em>larvae were present in the East River and if so, could they have come from the Hudson River. To meet the first objective, we examined entrainment data collected at the Charles Poletti Power Plant (Poletti) during the years 1999 through 2002. To meet the second objective, we examined the simulated release of 168,000 neutrally buoyant, passive particles in the lower Hudson River Estuary, using a particle-tracking model that was linked to an estuarine circulation model. We also compared the abundance of striped bass post-yolk-sac larvae (PYSL) collected in the East River at Poletti with the abundance of striped bass PYSL collected in the Battery region of the lower Hudson River Estuary and the abundance of striped bass PYSL in the Battery region with freshwater flow in the estuary. Striped bass PYSL were collected by entrainment sampling in the East River at Poletti every year from 1999 through 2002. The striped bass PYSL in the East River probably came from the Hudson River Estuary because the median probability that neutrally buoyant, passive particles would be transported from the lower Hudson River Estuary to the upper East River and western Long Island Sound was 0.12, with a median transport time of 2 d, and because the mean density of striped bass PYSL was highest at Poletti and in the Battery region during the same year. The abundance of striped bass PYSL in the Battery region was higher when freshwater flow during May and early June was higher.


2001 ◽  
Vol 79 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Thomas P Hurst ◽  
David O Conover

The importance of activity to overwintering fishes has received little attention. Activity imposes two constraints: maximum swimming speed limits habitats that can be occupied for short periods of time, while the metabolic cost of swimming limits the habitats that are suitable for long-term residence. We measured the energetic consequences of activity and maximum swimming speeds of young-of-the-year striped bass (Morone saxatilis), a species that overwinters in tidal estuaries. The energetic cost of swimming was determined from energy changes in unfed fish forced to swim at various speeds, while energy changes in fed fish provided a measure of their ability to offset swimming costs through feeding. In high-velocity treatments, mortality was size-dependent and appeared to be related to fatigue rather than to depletion of energy reserves. The energetic cost of swimming increased with swimming velocity, but fish increased food consumption and thereby met their metabolic needs. In a second experiment the thermal dependence of swimming capacity in winter-acclimated striped bass was measured. Swimming speeds increased with temperature, from 2.7 body lengths (BL)/s at 2°C to 4.8 BL/s at 8 and 11°C, but were considerably below observed flow velocities in the Hudson River, suggesting a need for behavioral or physical refuge from tidal currents. These results indicate the flexibility of energy budgets of overwintering fishes, allowing energetic stress to be minimized by reducing activity or elevating food-consumption rates when sufficient prey are available.


2002 ◽  
Vol 59 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Thomas P Hurst ◽  
David O Conover

We examined the role of salinity, body size, and energetic state in determining low temperature tolerance of young-of-the-year (YOY) striped bass (Morone saxatilis) and used this information to map optimal overwintering habitat in the Hudson River estuary. A long-term experiment compared survival at 15 ppt and 30 ppt. In additional experiments, winter-acclimated fish were exposed to temperature declines (2.3°C·day–1 to 1°C·week–1) at salinities from 0 ppt to 35 ppt. Highest survival at low temperatures was consistently observed at intermediate salinities. These results suggest that the observed distribution of overwintering striped bass is related to physiological constraints on osmo regulatory ability at low temperatures. Low temperature tolerance appeared unrelated to body size and energetic state. Salinity profiles were used to describe the location and extent of optimal wintering habitats under various hydrographic regimes. The location of optimal habitats was displaced by over 27 km along the river axis because of variation in salinity regime. Changes in the availability of optimal habitat may be responsible for variation in recruitment to the Hudson River population. These results demonstrate the need to consider a holistic approach encompassing all seasons of the year in assessing habitat requirements of fishes.


1970 ◽  
Vol 11 (2) ◽  
pp. 132
Author(s):  
Robert F. Denoncourt ◽  
William H. Bason

Sign in / Sign up

Export Citation Format

Share Document